
Markerless Articulated Human Body Tracking
from Multi-View Video with GPU-PSO

Luca Mussi1, Spela Ivekovic1,2, and Stefano Cagnoni1

1 Dept. of Information Engineering, University of Parma, Italy
2 Lessells Scholar, Royal Society of Edinburgh, Scotland

Abstract. In this paper, we describe the GPU implementation of a markerless
full-body articulated human motion tracking system from multi-view video se-
quences acquired in a studio environment. The tracking is formulated as a multi-
dimensional nonlinear optimisation problem solved using particle swarm optimi-
sation (PSO). We model the human body pose with a skeleton-driven subdivision-
surface human body model. The optimisation looks for the best match between
the silhouettes generated by the projection of the model in a candidate pose and
the silhouettes extracted from the original video sequence. In formulating the
solution, we exploit the inherent parallel nature of PSO to formulate a GPU-
PSO, implemented within the nVIDIA

TM
CUDA

TM
architecture. Results demon-

strate that the GPU-PSO implementation recovers the articulated body pose from
10-viewpoint video sequences with significant computational savings when com-
pared to the sequential implementation, thereby increasing the practical potential
of our markerless pose estimation approach.

1 Introduction

Articulated human body pose estimation is an active research area with solutions ap-
plicable in many domains, including virtual character animation, biometrics, human-
computer interaction, gait analysis, video surveillance, and others. While most indus-
trial solutions still tend to rely on marker-based systems, such as Vicon [23], the ad-
vances in the markerless video-based estimation are progressing rapidly [16]. The at-
traction of the markerless pose estimation lies in the reduced preparation time for each
capture session as well as the non-invasive nature of the procedure. In markerless cap-
ture, the use of tight body suits and magnetic or optical markers is not necessary; in-
stead, the subjects can normally take part in their every-day clothing. Replacing the
marker-based systems with markerless solutions, such as the one described in this pa-
per, opens the possibility of using motion capture in areas such as medical analysis and
home entertainment, where the use of tight body suits and markers is not acceptable.
Additionally, the increasing availability and affordability of the video cameras makes
markerless motion capture an ever more attractive alternative.

Modelling the articulated structure of the full human body for the purpose of pose
estimation requires a large number of parameters, typically at least 30. The articu-
lated pose estimation problem is therefore usually formulated as a search in a high-
dimensional parameter space, which is invariably computationally very complex. In
this paper, we address the issue of complexity by exploring the parallel nature of the

Fig. 1. Example pose results shown as skeletons overlaid on the corresponding input image. The
examples shown are taken from different sequences (Jon Walk, Tony Kick, Tony Punch and Tony
Stance) and different camera views (10 views were used for each sequence), hence the difference
in person size as well as orientation.

markerless pose estimation problem at hand and searching the corresponding large pa-
rameter space using PSO. We exploit the fact that the PSO solution naturally lends itself
to a parallel implementation on the state-of-the-art CUDA

TM
architecture, as well as that

the multi-view pose estimation, based on silhouette comparison, itself contains a degree
of parallelism that can be exploited to design a more efficient solution.

This paper is organised as follows. We begin with an overview of the related work
in Section 2. In Section 3 we outline the CUDA

TM
architecture and present the PSO

algorithm developed for it. Our pose estimation algorithm is presented in Section 4.
Finally, we report experimental results in Section 5 and conclude with Section 6.

2 Related Work

In this section, we review the related work relevant to our approach. We begin with the
related research in articulated human body pose estimation and then review the basics
of PSO and relevant research in the area of PSO parallelisation.

2.1 Articulated human body pose estimation from video

Articulated 3-D human body pose estimation from video is an active research area [13,
19]. The complexity of the human body pose parametrisation has invariably required
the pose estimation to be formulated as a high-dimensional space search problem and
research has focused on reducing the complexity of the search. Various implementations
of particle filters quickly gained popularity [1, 4]. Partitioning the search space into
smaller, more manageable subspaces is also a popular approach [1, 12]. Furthermore,
given the complexity of the articulated human body motion, the standard motion models
used in the tracking literature did not suffice and attempts were made to learn motion
models for particular actions from training data collected in advance [2, 21].

The above mentioned approaches suffer from various setbacks. The particle-filtering
solutions critically rely on a high number of particles to adequately represent the poste-

rior distribution, which in turn increases their computational complexity beyond practi-
cal use when considering a wide variety of motion. The tendency to rely on pre-trained
motion models causes the human body tracking approaches to lose their generalisation
abilities. In order to address that, researchers started turning to methods which could
reliably provide motion estimates without a pre-trained motion model [5]. In this paper,
we explore a similar direction. We use a powerful search algorithm which is capable
of recovering the pose without any prior knowledge of the nature of motion. The main
advantage of such an approach is in its generality as it can estimate any kind of body
motion when provided with a sufficient number of constraints, in our case image silhou-
ettes. The downside is that it requires a lot of computation time. Previous attempts at
reducing the computational complexity have focused on algorithmic improvements [7–
9]. However, as we show in this paper, exploiting the parallel nature of both the search
algorithm and the multi-view pose estimation problem by implementing the approach
on a graphical processing unit (GPU) provides a natural alternative solution which is
significantly more efficient while being equally general.

2.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) [10] is a powerful optimisation algorithm which
searches the optimum of a fitness function following rules inspired by the behaviour of
flocks of birds looking for food. As a population based meta-heuristic, PSO has recently
gained popularity due to its robustness, effectiveness, and simplicity.

A particle’s position and velocity within the domain of the fitness function at time t
can be computed using the following equations:

V (t) = w V (t− 1) +
C1 R1 [Xbest (t− 1)−X(t− 1)] + (1)
C2 R2 [Xgbest(t− 1)−X(t− 1)]

X(t) = X(t− 1) + V (t) (2)

where V is the velocity of the particle, C1, C2 are positive constants, R1, R2 are random
numbers uniformly drawn between 0 and 1, w is the so-called ‘inertia weight’, X(t) is
the position of the particle at time t, Xbest(t− 1) and Xgbest(t− 1) are, respectively,
the best-fitness position reached by the particle and the best-fitness point ever found by
the whole swarm up to time t− 1.

Many variants of the basic algorithm have been developed [18], some of which
define different topologies for particles’ neighbourhoods. A usual variant of PSO sub-
stitutes Xgbest(t− 1) with X lbest(t− 1), the best position ever found within a pre-set
neighbourhood of the particle under consideration. This formulation admits, in turn,
several variants, depending on the neighbourhood topology.

Another factor that affects the performance of PSO is the order by which Xgbest

/ X lbest are updated. In ‘synchronous’ PSO, during each iteration, positions and ve-
locities of all particles are updated one after another in turn, after which each parti-
cle’s fitness is evaluated. Finally, when the fitness of all particles is known, the value
of Xgbest / X lbest is updated. The ‘asynchronous’ version of PSO, instead, updates

Xgbest / X lbest immediately after evaluation of each particle’s fitness, leading to a
more ‘reactive’ swarm which is attracted more promptly by newly-found optima.

Despite good convergence properties, PSO is still an iterative process which may
require millions of particle updates and fitness evaluations. This makes the design of ef-
ficient PSO implementations a problem of great practical relevance, especially for real-
time applications to dynamic environments. This is the case, for example, of computer
vision applications in which PSO has been used to determine location and orientation
of objects [14, 15] or posture of people [8].

PSO parallelisation has therefore become a popular subject for research. Before
GPU-based programming environments were available, PSO was implemented follow-
ing more traditional parallel computing paradigms, as in [6, 20]. Some of the implemen-
tations were hybridised with evolutionary algorithm paradigms, such as the so-called
‘island model’, obtaining a coarse-grained parallelisation [3, 24]. Conversely, research
on fine-grained parallel PSO algorithms has mainly focused on the swarm topology.
One of the first GPU-based PSO implementations was based on a fine-grained ap-
proach [11] which, however, was still based on ’hand-coded’ texture-rendering map-
ping and did not rely on any GPU-specific programming environment. An overview of
published work according to granularity analysis can be found in [24].

An interesting classification of parallel PSO algorithms, based on the best position
update strategy, is reported in [27].

The most recent implementations are GPU-based [22, 25, 28], mostly developed
within the CUDA

TM
environment, like the parallel PSO algorithm which we have devel-

oped and used in this work. Comparisons on the same benchmarks (not yet published)
suggest that our approach outperforms these in terms of computation efficiency.

3 Parallel PSO Implementation Within the CUDATMArchitecture

CUDA
TM

(Compute Unified Distributed Architecture) is a parallel computing environ-
ment by nVIDIA

TM
which exploits the massively parallel computation capabilities of

its most recent GPUs. CUDA
TM

’s programming model requires that the problem under
consideration be partitioned into many independent sub-tasks (thread blocks) which are
solved in parallel by a number of cooperating threads. In the CUDA

TM
abstraction a pro-

grammer can define a two-dimensional grid of thread blocks; each block is associated
with a unique pair of indices that identifies it within the grid. Within each block, as well,
the threads that compose it can be organised as a two- or three-dimensional grid within
which they are identified by a unique set of indices. This mechanism allows each thread
to personalise its access to data structures and to decompose problems effectively.

From a hardware viewpoint, a CUDA
TM

-compatible GPU is made up of a scalable
array of multithreaded Streaming Multiprocessors (SMs), each of which is able to ex-
ecute several thread blocks at the same time. Each SM embeds eight scalar processing
cores and is equipped with a number of fast 32-bit registers, a parallel data cache shared
among all cores, a read-only constant cache and a read-only texture cache accessed via a
texture unit that provides several different addressing/filtering modes. In addition, SMs
can access local and global memory spaces which are (non-cached) read/write regions

Listing 1.1. Synchronous PSO pseudo-code

<Initialise positions/velocities of all particles>
<Perform a first evaluation of the fitness functions>
<Set initial personal/global bests>
for (i = 0; i < generationsNumber; i++){

<Update the position of all particles>
<Re−evaluate the fitness of all particles>
<Update all personal/global bests>}

<Retrieve global best information to be returned as final result>

of device memory: these memories are characterised by latency times about two or-
ders of magnitude larger than the registers and texture cache. Only threads belonging to
the same thread block can share data in fast memory; different thread blocks may only
share data allocated in slow memory. CUDA

TM
’s scheduler allocates as many thread

blocks at the same time as possible, compatibly with available resources, which permits
a CUDA

TM
program to be run on any number of SMs. SMs can manage hundreds of

threads running different code segments thanks to an architecture called SIMT (Single
Instruction, Multiple Thread) which creates, manages, schedules, and executes groups
(warps) of 32 parallel threads. Opposite to what happens in a SIMD (Single Instruction,
Multiple Data) architecture, the whole execution and branching behavior of threads is
specified. This way it is possible to manage parallel code for independent scalar threads
as well as code for parallel data processing, which is executed by coordinated threads3,4.

3.1 Parallelising PSO using CUDA
TM

The structure of PSO is very close to being intrinsically parallel. In PSO, the only
dependence between the processes which update the particles’ velocities and positions
is related to the information which must be shared among the particles. This information
is either only Xgbest or the corresponding vector X lbest of the best positions found by
any member of each particle’s neighbourhood.

The most natural way to remove the dependence between particles’ updates would
consist of implementing synchronous PSO, updating Xgbest or X lbest only at the end
of each iteration. While this would permit the use of a single thread block (with one
thread per particle) to implement a swarm, while avoiding accesses to global mem-
ory, it would impose limitations to the implementation of the fitness function and use
computing resources inefficiently.

To better exploit the capabilities offered by CUDA
TM

in developing a parallel PSO
algorithm, we considered the main stages of the algorithm as separate tasks, which can
be parallelised differently. Listing 1.1 shows the pseudo-code of a synchronous PSO
algorithm, regardless of implementation. In our case the three stages of the main loop
are implemented as different kernels sequentially scheduled by the GPU. This does not
affect execution time since kernel scheduling is very efficient. However, it imposes that

3 nVIDIA CUDA C programming - Best practices guide v. 2.3, nVidia Corporation, May 2010
4 nVIDIA CUDA programming guide v. 2.3, NVidia Corporation, May 2010

each kernel must load all data it needs initially and store it back at the end of every
execution, since in CUDA

TM
data can be shared among kernels only through the (slow)

global memory. Despite this, having limited the number of such accesses and organ-
ised data in order to exploit the GPU coalescing capability, the multi-kernel approach
turned out to be more efficient. The first kernel (PositionUpdateKernel) updates the par-
ticles’ positions scheduling a number of thread blocks equal to the number of particles;
each block updates the position of one particle running a number of threads equal to
the problem dimension D. The second kernel (FitnessKernel) is used to compute the
fitness. Depending on the fitness function structure, i.e., its parallel nature, more than
one kernel can be used at this stage to maximise the use of GPU resources. The last
kernel (BestUpdateKernel) updates Xgbest and X lbest. Since its structure must reflect
the swarm topology, the number of thread blocks to be scheduled may vary from one
per swarm, in case of global-best topology, to many per swarm (to have one thread per
particle), in case of ring topology.

Pseudo-random numbers are directly generated on the GPU using the Mersenne
Twister kernel available in the CUDA

TM
SDK. Based on the available amount of de-

vice memory, we run this kernel every given number of PSO iterations. Pseudo-random
numbers are stored in a dedicated array which can be accessed by other kernels.

4 Pose Estimation Algorithm

In this section we provide a detailed description of the articulated pose estimation prob-
lem and its building blocks. We describe the articulated human body model which we
use to represent the candidate body poses, formulate the pose estimation as a PSO-
search and define the cost function used to evaluate the quality of a candidate pose.

4.1 Body Model

To represent the candidate body pose, we use a 3-D layered subdivision surface body
model consisting of two layers, the skeleton and the skin. The skeleton layer is defined
as a set of homogeneous 4×4 transformation matrices Ti which encode the information
about the position and orientation of every joint with respect to its parent joint in the
kinematic tree hierarchy:

Skeleton = {T0, T1, T2, ..., T20}, (3)

where Ti, i = 0 . . . 20, is a homogeneous transformation matrix encoding the orien-
tation of the coordinate system of joint i with respect to the coordinate system of the
preceding joint, specified by the kinematic tree shown in Figure 2.

The skin layer, which represents the second layer in the model, is connected to the
skeleton through the joints’ local coordinate systems. Each joint controls a certain area
of the skin. Whenever a joint or limb moves, the corresponding part of the skin moves
and deforms with it. As the skin is a subdivision surface, only the base mesh has to be
specified in the corresponding joint’s coordinate system. After the joint’s configuration
has been specified, the base mesh is subdivided by repeatedly applying the Catmull-
Clark subdivision operator until the desired smooth shape of the body is obtained [26].

Fig. 2. Catmull-Clark subdivision surface body model and the corresponding skeletal hierarchy.
In the full hierarchy, every joint has 3 rotational and 3 translational degrees of freedom (DOF).
For the purpose of our work, we choose a subset of rotational DOF, detailed in Table 1. We also
fix the limb lengths and only optimise the global position of the body in space.

4.2 PSO parametrisation of the articulated pose

In PSO, each particle represents a potential solution in the search space. Our search
space is the space of all plausible skeleton configurations. The individual particle’s
position vector in the search space is specified as follows:

Xi = (rx, ry, rz, α
0
x, β0

y , γ0
z , α1

x, β1
y , γ1

z , ..., γM
z), (4)

where i denotes the index of the particle in the swarm, rx, ry, rz denote the position
of the root joint with respect to the reference (world) coordinate system, and αj

x, βj
y, γj

z

refer to rotational degrees of freedom of joint j around the x, y, and z-axis, respectively.
The total number of joints (the root joint has both translational and rotational degrees
of freedom) is M + 1. As not all joints that are used to display the body need to be
optimised, the joints and their respective degrees of freedom actually used in our pose
estimation algorithm are given in Table 1.

4.3 Search Hierarchy

Searching for the correct articulated pose configuration in a 32-dimensional search
space is expensive. Fortunately, the hierarchy in the kinematic structure of the human
body allows for the search to be formulated as a sequence of steps in which only a sub-
set of the 32 parameters is optimised at any one time. The hierarchy has the form of a
kinematic tree and is illustrated in Figure 2. We formulate the search algorithm as 11
disjoint steps (equivalent to splitting the 32-dimensional search space into 11 disjoint
subspaces) detailed in Table 2, where the solution of each step constrains the search
space for the steps which follow. The individual steps are chosen so that only one limb
segment at a time is optimised.

Table 1. Joints used to describe the configuration of the human body pose and their respective de-
grees of freedom used in the pose estimation algorithm. There are 32 DOF in total. The numbers
in parentheses refer to the transformations in Figure 2

JOINT (index) # DOF JOINT (index) # DOF
Global body position (0) 3 rx, ry, rz Right elbow orientation (11) 1 γ11

z

Torso orientation (1) 3 α1
x, β1

y , γ1
z Root left hip orientation (13) 2 α13

x , γ13
z

Head orientation (2) 2 α2
x, γ2

z Left hip orientation (14) 3 α14
x , β14

y , γ14
z

Left clavicle orientation (5) 2 α5
x, γ5

z Left knee orientation (15) 1 γ15
z

Left shoulder orientation (6) 3 α6
x, β6

y , γ6
z Root right hip orientation (17) 2 α17

x , γ17
z

Left elbow orientation (7) 1 γ7
z Right hip orientation (18) 3 α18

x , β18
y , γ18

z

Right clavicle orientation (9) 2 α9
x, γ9

z Right knee orientation (19) 1 γ19
z

Right shoulder orientation (10) 3 α10
x , β10

y , γ10
z TOTAL 32

Table 2. The 11 steps of the hierarchical optimisation. Joint indices are the same as in Figure 2.

(Step 1) Global body pos.: (Step 2) Torso: (Step 3) Head:
3 DOF: rx, ry, rz 3 DOF: α1

x, β1
y , γ1

z 2 DOF: α2
x, γ2

z

(Step 4) Left upper arm: (Step 5) Right upper arm: (Step 6) Left lower arm:
4DOF: α5

x, γ5
z , α6

x, γ6
z 4DOF: α9

x, γ9
z , α10

x , γ10
z 2DOF: β6

y , γ7
z

(Step 7) Right lower arm: (Step 8) Left upper leg: (Step 9) Right upper leg:
2DOF: β10

y , γ11
z 4DOF: α13

x , γ13
z , α14

x , γ14
z 4DOF: α17

x , γ17
z , α18

x , γ18
z

(Step 10) Left lower leg: (Step 11) Right lower leg:
2DOF: β14

y , γ15
z 2DOF: β18

y , γ19
z

4.4 Fitness function

The fitness function compares the silhouettes generated by the model in its candidate
pose with the silhouettes extracted from the original images. The original images can
be acquired from N different viewpoints. Each image is foreground-background seg-
mented and binarised to obtain a silhouette. Let the images containing the original
silhouettes be denoted as Io

i , i = 1...N . Similarly, let Im
i , i = 1...N denote images of

the model silhouettes. The cost function can then be written as follows:

E =
N∑

i=1

1
Zi

row∑
1

col∑
1

(Io
i & Im

i), (5)

where row and col denote the image rows and columns, respectively, and & denotes
the bitwise AND operation. Coefficients Zi are the normalisation constants obtained by
counting the number of silhouette pixels in every original image.

5 Experiments

Data. The set of 5 test sequences are a courtesy of CSSVP, University of Surrey. They
were acquired in a dedicated multi-camera acquisition studio and consist of 10 synchro-
nised videos with resolution 720× 576, acquired at 25fps.

Table 3. This table shows the consistency of the joint pose estimates for each of the 5 test se-
quences over 10 runs of the pose estimation algorithm. As the mean joint position estimate de-
pends on the pose which changes through the sequence, we only report, for each joint, the stan-
dard deviation (in cm) in the estimate of its 3-D position computed over the entire sequence. Joint
numbers correspond to those shown in Figure 2.

Sequence Jon Walk Tony Kick Tony Punch Tony Stance Tony Walk
Joint Number σx σy σz σx σy σz σx σy σz σx σy σz σx σy σz

1 2.4 1.1 1.9 1.8 1.1 1.6 0.6 0.5 0.6 0.9 0.6 0.9 2.7 0.9 2.3
2 1.1 1.1 1.0 1.6 0.9 1.2 0.5 0.4 0.8 0.7 0.6 0.7 1.5 0.9 1.1
3 0.7 1.0 0.7 0.9 0.9 0.7 0.2 0.4 0.4 0.4 0.6 0.4 0.8 0.9 0.6
4 0.2 1.0 0.4 0.3 0.8 0.4 0.1 0.5 0.2 0.2 0.6 0.3 0.2 0.9 0.2
6 1.2 1.3 3.1 2.0 1.2 3.6 0.7 0.6 2.1 0.8 0.8 3.0 1.7 1.7 3.0
7 1.8 4.1 1.8 1.3 1.0 3.0 0.5 0.6 1.0 0.6 0.9 1.0 0.9 2.3 2.0
8 2.1 5.8 2.7 1.9 3.6 1.8 1.6 4.5 2.6 1.4 5.3 3.8 1.1 2.2 3.0
10 1.2 1.1 3.1 1.8 1.1 3.2 0.9 0.6 1.6 0.9 0.8 2.2 1.6 1.7 1.5
11 0.9 1.5 1.7 1.5 1.4 2.4 0.7 0.5 1.5 0.6 0.4 2.2 0.9 2.3 1.6
12 0.9 1.3 1.6 1.9 1.9 1.4 1.6 1.3 1.1 1.1 1.5 0.6 0.9 2.1 2.3
14 2.4 1.1 1.7 1.8 1.1 1.3 0.6 0.5 0.6 0.9 0.6 1.2 2.7 0.9 2.1
15 0.9 1.3 0.7 0.5 1.1 0.6 0.3 0.5 0.3 0.4 0.6 0.6 1.6 1.3 2.0
16 2.3 1.5 2.5 1.9 1.2 0.8 0.8 0.5 0.3 0.9 0.7 0.5 2.7 1.8 5.3
18 2.4 1.1 1.9 1.8 1.2 1.7 0.6 0.5 0.6 0.9 0.6 0.9 2.7 0.9 2.4
19 0.6 1.3 0.6 1.7 2.3 1.6 0.3 0.5 0.2 0.3 0.7 0.3 1.9 1.2 3.4
20 2.3 1.4 1.4 2.7 3.1 1.7 0.4 0.5 0.3 0.7 0.7 0.5 3.4 2.7 5.3

Algorithm settings. The experiments we report in this paper were run with a swarm
containing 10 particles. The PSO inertia parameter decreased over time as in [8, 9],
that is, it decreased according to w = 2.0/ex, where x has the role of a counter and
where the starting value for the first frame was set to x = 1.0 and for all subsequent
frames to x = 2.0. Whenever a PSO iteration (one swarm move) did not produce an
improved global best estimate, the inertia value decreased by increasing the counter to
x = x + 0.05. The optimisation terminated when the inertia value fell under 0.1. The
constants C1 and C2 in Equation (2) were set to 2.0.

GPU. The experiments were run with an nVIDIA
TM

Quadro FX 5800 with 4GB Gddr3
RAM on a PC powered by a 64-bit Intel(R) Core(TM) i7 CPU running at 2.67GHz.

Human Body Model. The process of pose estimation, as presented in this paper,
requires that the particle position vector be rendered as a human body model using
Catmull-Clark subdivision and then projected onto the camera image plane(s) to gener-
ate candidate silhouettes. To perform the body model subdivision on the GPU, we have
adapted the implementation by Patney et al. [17]. The projection of the body model
onto camera planes is implemented in OpenGL and is the only operation that has been
left to the CPU. As such, it represents a bottleneck of our algorithm, because it incurs
a memory transfer between the CPU and GPU every time the body models are ren-
dered to generate silhouettes for the fitness function. In order to minimise the number
of transfers, we render all camera views for all particles into one large OpenGL buffer
and perform only one transfer for every iteration of the PSO. As the OpenGL buffer
size is limited to 8192 × 8192 pix, we can use only 10 particles before exceeding the
available buffer size. Porting the camera projection code onto GPU would remove the
problem of the CPU-GPU memory transfer and allow the use of larger swarms as the

limit would not be imposed by the OpenGL buffer size, but instead by the amount of
memory available on the graphics card.

Results. The presented CUDA-PSO-based pose estimation algorithm was developed
from the hierarchical PSO reported in [8] for the problem of upper body pose estimation
and using a subdivision surface body model. The same algorithm was later adapted to
full body pose in [9]; however, it also replaced the subdivision model with a simpler
cylinder model to enable a fair comparison of the search method with a competing
particle filtering approach. The work was further extended in [7], where an adaptive full-
body hierarchical pose estimation (APSO) was reported which dynamically adjusted
the search region size in every frame in an attempt to reduce the computation time.
In [7], the APSO algorithm took on average 155 seconds for the Tony Kick and Tony
Punch sequence, whereas the algorithm reported here requires only 6.9 seconds per
frame for the same sequence. Similarly, in [7], Jon Walk required 176 seconds per frame
while our algorithm takes only 7.4 seconds. Not only does the algorithm reported in this
paper achieve a 20-fold faster execution time, but it does so with a more complex body
model which includes the subdivision process and allows for much more flexibility in
modelling the shape of the human body.

Figure 1 shows examples of estimated poses for different camera views and dif-
ferent sequences. We performed a quantitative study of the pose estimation accuracy
on a 50-frame long synthetic sequence of a kick, the results of which are reported in
Figure 3. The plots show that the mean error with respect to the ground truth over 500
estimates are well below 5 cm for individual joints, and below 7 cm for the full pose
which is comparable or better than the competing generative pose estimation methods
which have been extensively tested in [9]. The main deviation from the ground truth
is detected in the right ankle joint (joint 17) in Figure 3 left which is also the reason
for the large spread of estimates in Figure 3 right between frames 20 and 25, when the
ankle joint is not correctly estimated. In spite of occasional glitches, the optimisation
seems to recover from bad estimates without difficulty. The results were obtained with
10 particles and we anticipate that a larger number of particles would further improve
the performance; however, this would require the camera projection implementation on
GPU and has been left as future work.

As we do not have the ground truth available for the real sequences, we instead
study the variability in the pose estimates over 10 runs of the algorithm. The results
are shown in Table 3 and indicate that, just like in the synthetic sequence, the estimates
are generally consistent with occasional imperfections which, however, do not cause
algorithm divergence.

Unlike the competing approaches, our method handles initialisation automatically.
We start from a canonical “T-pose” and use a higher starting inertia value in the first
frame of the sequence, which causes the particles to explore a larger region of the search
space. In the subsequent frames, the temporal consistency of the human motion is ex-
ploited by initialising the search around the final estimate of the previous frame and
using a lower starting inertia value to encourage the search around the previous esti-
mate. The performance on the first frame is comparable to the performance on the rest
of the sequence and in line with the ability of the algorithm to automatically recover
from bad estimates. This ability is due to the global search nature of the PSO approach.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

di
st

an
ce

 (
cm

)

joint

distances
mean values

 5

 10

 15

 20

 25

 1 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 (
cm

)

frame

distances
mean values

Fig. 3. Algorithm performance on the synthetic sequence. Left: distances (in cm) from the ground
truth of each joint estimate in 50 frames over 10 runs. Right: distances from the ground truth of
all joint estimates over 10 runs for each of the 50 frames. Means are represented by bullets.

6 Conclusions

In this paper, we described a parallel approach to articulated human body pose estima-
tion from multi-view video sequences, based on the CUDA

TM
architecture. The results

show that the execution time can be cut down noticeably by formulating the algorithm
on the GPU, without sacrificing the pose estimation accuracy, thereby exploiting the
vast computational resource available on an ordinary desktop PC. The current imple-
mentation still combines the computational power of the CPU and GPU and additional
speedup is possible by deploying the complete algorithm on GPU in order to avoid the
communication bottleneck. This would also allow us to increase the size of the swarm,
which is likely to lead to better performance. A further improvement is anticipated from
exploiting the parallelism in the kinematic structure of the human body. Both improve-
ments have been left as future work.

Acknowledgments

The authors would like to thank Prof. A. Hilton from the CSSVP, University of Surrey,
for the test sequences, and Mr A. Patney from University of California, Davis, for shar-
ing his CUDA implementation of the Catmull-Clark subdivision. S. Ivekovic would like
to thank the RSE Lessells Scholarship for the financial support that enabled this work.

References

1. Bandouch, J., Engstler, F., Beetz, M.: Evaluation of hierarchical sampling strategies in 3D
human pose estimation. In: Proc. British Machine Vision Conference (2008)

2. Caillette, F., Galata, A., Howard, T.: Real-time 3-D human body tracking using learnt models
of behaviour. Computer Vision and Image Understanding 109(2), 112–125 (2008)

3. Chang, J.F., Chu, S.C., Roddick, J.F., Pan, J.S.: A parallel particle swarm optimization algo-
rithm with communication strategies. J. Inf. Sci. Eng. 21(4), 809–818 (2005)

4. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. International
Journal of Computer Vision 61(2), 185 – 205 (2005)

5. Gall, J., Rosenhan, B., Brox, T., Seidel, H.P.: Optimization and filtering for human motion
capture. International Journal of Computer Vision 87(1–2), 75–92 (2010)

6. Gies, D., Rahmat Samii, Y.: Reconfigurable array design using parallel particle swarm opti-
mization. In: Intl. Symp. Antennas and Propagation Soc. vol. 1, pp. 177–180 (2003)

7. Ivekovic, S., John, V., Trucco, E.: Markerless multi-view articulated pose estimation using
adaptive hierarchical particle swarm optimisation. In: Proceedings of EvoApplications 2010,
LNCS 6024. pp. 241–250 (2010)

8. Ivekovic, S., Trucco, E., Petillot, Y.: Human body pose estimation with particle swarm opti-
misation. Evolutionary Computation 16(4), 509–528 (2008)

9. John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchi-
cal particle swarm optimisation. Image and Vision Computing In Press, Corrected Proof,
available online (2010)

10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int. conf. on Neural
Networks. vol. IV, pp. 1942–1948. IEEE CS Press (1995)

11. Li, J., Wang, X., He, R., Chi, Z.: An efficient fine-grained parallel genetic algorithm based
on GPU-accelerated. In: IFIP Int. Conf. on Network and Parallel Computing Workshops. pp.
855–862 (2007)

12. MacCormick, J., Isard, M.: Partitioned sampling, articulated objects, and interface-quality
hand tracking. In: Proceedings of ECCV, LNCS 1843. pp. 3–19. Springer-Verlag (2000)

13. Moeslund, T., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion
capture and analysis. Computer Vision and Image Understanding 104(2-3), 90–126 (2006)

14. Mussi, L., Cagnoni, S.: Particle swarm for pattern matching in image analysis. In: Artificial
life and evolutionary computation, pp. 89–98. World Scientific, Singapore (2010)

15. Mussi, L., Daolio, F., Cagnoni, S.: GPU-based road sign detection using particle swarm op-
timization. In: IEEE Conf. Intelligent System Design and Applications. pp. 152–157 (2009)

16. Organic Motion: http://www.organicmotion.com/ (2010)
17. Patney, A., Ebeida, M.S., Owens, J.D.: Parallel view-dependent tessellation of Catmull-Clark

subdivision surfaces. In: Proc. Conf. on High Performance Graphics. pp. 99–108 (2009)
18. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intel-

ligence 1(1), 33–57 (2007)
19. Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision and Image

Understanding 108(1–2), 4–18 (2007)
20. Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D.: Parallel global opti-

mization with the particle swarm algorithm. J. Num. Methods in Eng. 61, 2296–2315 (2003)
21. Urtasun, R., Fleet, D.J., Hertzmann, A., Fua, P.: Priors for people tracking from small training

sets. In: Proceedings of IEEE ICCV. pp. 403–410 (2005)
22. Veronese, L.d., Krohling, R.A.: Swarm’s flight: accelerating the particles using C-CUDA.

In: IEEE Congress on Evolutionary Computation (CEC 2009). pp. 3264–3270 (2009)
23. Vicon Motion Capture Systems: http://www.vicon.com/ (2010)
24. Waintraub, M., Schirru, R., Pereira, C.: Multiprocessor modeling of parallel Particle Swarm

Optimization applied to nuclear engineering problems. Progress in Nuclear Energy 51, 680–
688 (2009)

25. Wang, W., Hong, Y., Kou, T.: Performance gains in parallel particle swarm optimization via
nVIDIA GPU. In: Workshop on Computational Mathematics and Mechanics 2009 (2009)

26. Warren, J., Schaefer, S.: A factored approach to subdivision surfaces. Computer Graphics
and Applications 24(3), 74 – 81 (2004)

27. Xue, S.D., Zeng, J.C.: Parallel asynchronous control strategy for target search with swarm
robots. International Journal of Bio-Inspired Computation 1(3), 151 – 163 (2009)

28. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: Proc. 2009 IEEE
Congress on Evolutionary Computation (CEC 2009). pp. 1493–1500 (2009)

